Sigma-Prikry forcing II: Iteration Scheme

نویسندگان

چکیده

In Part I of this series [A. Poveda, A. Rinot and D. Sinapova, Sigma-Prikry forcing I: The axioms, Canad. J. Math. 73(5) (2021) 1205–1238], we introduced a class notions which call [Formula: see text]-Prikry, showed that many the known Prikry-type center around singular cardinals countable cofinality are text]-Prikry. We given text]-Prikry poset text] text]-name for non-reflecting stationary set text], there exists corresponding projects to kills stationarity text]. paper, develop general scheme iterating posets and, as an application, blow up power limit Laver-indestructible supercompact cardinals, then iteratively kill all subsets its successor. This yields model in cardinal hypothesis fails simultaneous reflection finite families sets holds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Prikry forcing and iteration of generic ultrapowers

Moreover Bukovský [1] and Dehornoy [2] showed that the generic extension Mω[〈j0,n(κ) | n ∈ ω〉] is ⋂ n∈ω Mn in Theorem 1.1. (For the history of these results, read the introduction of Dehornoy [2] and pp.259-260 of Kanamori [6]. ) In Dehornoy [3], these results were generalized for the forcing of Magidor [7] which changes a measurable cardinal of higher Mitchell order into a singular cardinal of...

متن کامل

Mathias-Prikry and Laver-Prikry type forcing

We study the Mathias-Prikry and Laver-Prikry forcings associated with filters on ω. We give a combinatorial characterization of Martin’s number for these forcing notions and present a general scheme for analyzing preservation properties for them. In particular, we give a combinatorial characterization of those filters for which the Mathias-Prikry forcing does not add any dominating reals.

متن کامل

Hybrid Prikry Forcing

We present a new forcing notion combining diagonal supercompact Prikry focing with interleaved extender based forcing. We start with a supercompact cardinal κ. In the final model the cofinality of κ is ω, the singular cardinal hypothesis fails at κ and GCH holds below κ. Moreover we define a scale at κ, which has a stationary set of bad points in the ground model.

متن کامل

Supercompact extender based Prikry forcing

The extender based Prikry forcing notion is being generalized to supercompact extenders.

متن کامل

Prikry Forcing with Long Extenders

In this note, we go through Gitik’s Long Extender forcing. In order to motivate it, work through the basic Pirkry forcing as well as the diagonal Prikry forcing. The presentation here is based on Spencer Unger’s lectures from the 2015 GSST in addition to Gitik’s Handbook chapter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Logic

سال: 2022

ISSN: ['0219-0613', '1793-6691']

DOI: https://doi.org/10.1142/s0219061321500197